( M MERCOLA) Shrimp are slated to become the latest food source exposed to messenger ribonucleic acid (mRNA) vaccines, courtesy of ViAqua Therapeutics, an Israeli-based biotechnology startup. The company has secured $8.25 million in funding from venture capitalists for its oral RNA-based shrimp vaccine, which is intended to target white spot syndrome virus (WSSV).
With plans to administer its RNA-based product via coated feed, ViAqua suggests the RNA molecules can inhibit gene expression, silencing disease-affected genes with every meal.1 WSSV is a devastating condition in shrimp, leading to a 15% reduction in global shrimp production each year — an annual loss of about $3 billion.2
ViAqua says challenge tests show its RNA-based formulation improved shrimp survival against WSSV, but at what cost? The use of mRNA in the food supply is controversial for good reason — no one knows what the long-term consequences will be.
Can Shrimp Be Vaccinated?
Shrimp lack an adaptive immune system, the type that "remembers" exposures to infectious agents so it can mount a better response the next time it comes around. Because of this, it’s long been assumed that shrimp cannot be vaccinated. According to the Global Seafood Alliance:7
"Scientific literature on shrimp has often adopted terms and approaches from mammalian immunology, but not always in a correct way. Such is the case in the use of the term "vaccination" in crustaceans. The principle of vaccination is based on two key elements of the immune system: specificity and memory. These two properties are not recognized in the immune systems of shrimp and other invertebrates."
However, while shrimp don’t have adaptive immunity in the traditional sense, it’s becoming clear that they do have some defense against viruses, which is only beginning to be understood. In 2008, researchers with Australia’s University of Queensland explained, "There is mounting evidence for specific immune memory in crustaceans, including shrimp," adding:8
"It has been widely assumed that no such adaptive systems exist in invertebrates, thus vaccines have not been routinely developed and used in shrimp aquaculture. Invertebrates were considered to rely solely on an innate immune system characterized by generalized immune responses to conserved molecular structures of invading pathogens such as bacteria and fungi.
Some of these pathways are relatively well understood, involving an array of pattern recognition receptors interacting with serine proteases to initiate encapsulation, phagocytosis and an antimicrobial cascade based on the phenoloxidase enzyme system.
However, what is becoming more apparent is that the diversity and sophistication of innate responses in invertebrates is far greater than previously assumed. The invertebrate immune response to viruses is particularly poorly understood."
ViAqua’s RNAi product claims to "enhance resistance to viral infections" in shrimp,9 and they have plans to develop additional mRNA vaccines for fish and other biotechnology products targeting additional shrimp viruses and other pathogens.10
But shrimp pathogens of one kind or another are virtually guaranteed to persist in the intensive aquaculture farms where many shrimp are raised. Further, the risks of tinkering with shrimp genetics are completely unknown.
-------------------------------